Tree t-spanners in outerplanar graphs via supply demand partition
نویسندگان
چکیده
A tree t-spanner of an unweighted graph G is a spanning tree T such that for every two vertices their distance in T is at most t times their distance in G. Given an unweighted graph G and a positive integer t as input, the tree t-spanner problem is to compute a tree t-spanner of G if one exists. This decision problem is known to be NP-complete even in the restricted class of unweighted planar graphs. We present a linear-time reduction from tree t-spanner in outerplanar graphs to the supply-demand tree partition problem. Based on this reduction, we obtain a linear-time algorithm to solve tree t-spanner in outerplanar graphs. Consequently, we show that the minimum value of t for which an input outerplanar graph on n vertices has a tree t-spanner can be found in O(n logn) time.
منابع مشابه
Collective Tree Spanners in Graphs with Bounded Genus, Chordality, Tree-Width, or Clique-Width
In this paper we study collective additive tree spanners for special families of graphs including planar graphs, graphs with bounded genus, graphs with bounded tree-width, graphs with bounded cliquewidth, and graphs with bounded chordality. We say that a graph G = (V,E) admits a system of μ collective additive tree r-spanners if there is a system T (G) of at most μ spanning trees of G such that...
متن کاملTree-decompositions with bags of small diameter
This paper deals with the length of a Robertson–Seymour’s tree-decomposition. The tree-length of a graph is the largest distance between two vertices of a bag of a tree-decomposition, minimized over all tree-decompositions of the graph. The study of this invariant may be interesting in its own right because the class of bounded tree-length graphs includes (but is not reduced to) bounded chordal...
متن کاملCollective Tree Spanners and Routing in AT-free Related Graphs
In this paper we study collective additive tree spanners for families of graphs that either contain or are contained in AT-free graphs. We say that a graph G = (V,E) admits a system of μ collective additive tree r-spanners if there is a system T (G) of at most μ spanning trees of G such that for any two vertices x, y of G a spanning tree T ∈ T (G) exists such that dT (x, y) ≤ dG(x, y) + r. Amon...
متن کاملAdditive Spanners for Circle Graphs and Polygonal Graphs
A graph G = (V, E) is said to admit a system of μ collective additive tree r-spanners if there is a system T (G) of at most μ spanning trees of G such that for any two vertices u, v of G a spanning tree T ∈ T (G) exists such that the distance in T between u and v is at most r plus their distance in G. In this paper, we examine the problem of finding “small” systems of collective additive tree r...
متن کاملCollective Additive Tree Spanners of Homogeneously Orderable Graphs
In this paper we investigate the (collective) tree spanners problem in homogeneously orderable graphs. This class of graphs was introduced by A. Brandstädt et al. to generalize the dually chordal graphs and the distance-hereditary graphs and to show that the Steiner tree problem can still be solved in polynomial time on this more general class of graphs. In this paper, we demonstrate that every...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Discrete Applied Mathematics
دوره 195 شماره
صفحات -
تاریخ انتشار 2015